18 research outputs found

    Learning scale-variant and scale-invariant features for deep image classification

    Get PDF
    Convolutional Neural Networks (CNNs) require large image corpora to be trained on classification tasks. The variation in image resolutions, sizes of objects and patterns depicted, and image scales, hampers CNN training and performance, because the task-relevant information varies over spatial scales. Previous work attempting to deal with such scale variations focused on encouraging scale-invariant CNN representations. However, scale-invariant representations are incomplete representations of images, because images contain scale-variant information as well. This paper addresses the combined development of scale-invariant and scale-variant representations. We propose a multi- scale CNN method to encourage the recognition of both types of features and evaluate it on a challenging image classification task involving task-relevant characteristics at multiple scales. The results show that our multi-scale CNN outperforms single-scale CNN. This leads to the conclusion that encouraging the combined development of a scale-invariant and scale-variant representation in CNNs is beneficial to image recognition performance

    Prototype-based Dataset Comparison

    Full text link
    Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSimComment: To be presented at ICCV 202

    Learning visual representations of style

    Get PDF
    Learning Visual Representations of Style Door Nanne van Noord De stijl van een kunstenaar is zichtbaar in zijn/haar werk, onafhankelijk van de vorm of het onderwerp van een kunstwerk kunnen kunstexperts deze stijl herkennen. Of het nu om een landschap of een portret gaat, het connaisseurschap van kunstexperts stelt hen in staat om de stijl van de kunstenaar te herkennen. Het vertalen van dit vermogen tot connaisseurschap naar een computer, zodat de computer in staat is om de stijl van een kunstenaar te herkennen, en om kunstwerken te (re)produceren in de stijl van de kunstenaar, staat centraal in dit onderzoek. Voor visuele analyseren van kunstwerken maken computers gebruik van beeldverwerkingstechnieken. Traditioneel gesproken bestaan deze technieken uit door computerwetenschappers ontwikkelde algoritmes die vooraf gedefinieerde visuele kernmerken kunnen herkennen. Omdat deze kenmerken zijn ontwikkelt voor de analyse van de inhoud van foto’s zijn ze beperkt toepasbaar voor de analyse van de stijl van visuele kunst. Daarnaast is er ook geen definitief antwoord welke visuele kenmerken indicatief zijn voor stijl. Om deze beperkingen te overkomen maken we in dit onderzoek gebruik van Deep Learning, een methodologie die het beeldverwerking onderzoeksveld in de laatste jaren enorm heeft gerevolutionaliseerd. De kracht van Deep Learning komt voort uit het zelflerende vermogen, in plaats van dat we afhankelijk zijn van vooraf gedefinieerde kenmerken, kan de computer zelf leren wat de juiste kenmerken zijn. In dit onderzoek hebben we algoritmes ontwikkelt met het doel om het voor de computer mogelijk te maken om 1) zelf te leren om de stijl van een kunstenaar te herkennen, en 2) nieuwe afbeeldingen te genereren in de stijl van een kunstenaar. Op basis van het in het proefschrift gepresenteerde werk kunnen we concluderen dat de computer inderdaad in staat is om te leren om de stijl van een kunstenaar te herkennen, ook in een uitdagende setting met duizenden kunstwerken en enkele honderden kunstenaars. Daarnaast kunnen we concluderen dat het mogelijk is om, op basis van bestaande kunstwerken, nieuwe kunstwerken te generen in de stijl van de kunstenaar. Namelijk, een kleurloze afbeeldingen van een kunstwerk kan ingekleurd worden in de stijl van de kunstenaar, en wanneer er delen missen uit een kunstwerk is het mogelijk om deze missende stukken in te vullen (te retoucheren). Alhoewel we nog niet in staat zijn om volledig nieuwe kunstwerken te generen, is dit onderzoek een grote stap in die richting. Bovendien zijn de in dit onderzoek ontwikkelde technieken en methodes veelbelovend als digitale middelen ter ondersteuning van kunstexperts en restauratoren

    Many Task Learning with Task Routing

    Full text link
    Typical multi-task learning (MTL) methods rely on architectural adjustments and a large trainable parameter set to jointly optimize over several tasks. However, when the number of tasks increases so do the complexity of the architectural adjustments and resource requirements. In this paper, we introduce a method which applies a conditional feature-wise transformation over the convolutional activations that enables a model to successfully perform a large number of tasks. To distinguish from regular MTL, we introduce Many Task Learning (MaTL) as a special case of MTL where more than 20 tasks are performed by a single model. Our method dubbed Task Routing (TR) is encapsulated in a layer we call the Task Routing Layer (TRL), which applied in an MaTL scenario successfully fits hundreds of classification tasks in one model. We evaluate our method on 5 datasets against strong baselines and state-of-the-art approaches.Comment: 8 Pages, 5 Figures, 2 Table

    Blind Dates: Examining the Expression of Temporality in Historical Photographs

    Full text link
    This paper explores the capacity of computer vision models to discern temporal information in visual content, focusing specifically on historical photographs. We investigate the dating of images using OpenCLIP, an open-source implementation of CLIP, a multi-modal language and vision model. Our experiment consists of three steps: zero-shot classification, fine-tuning, and analysis of visual content. We use the \textit{De Boer Scene Detection} dataset, containing 39,866 gray-scale historical press photographs from 1950 to 1999. The results show that zero-shot classification is relatively ineffective for image dating, with a bias towards predicting dates in the past. Fine-tuning OpenCLIP with a logistic classifier improves performance and eliminates the bias. Additionally, our analysis reveals that images featuring buses, cars, cats, dogs, and people are more accurately dated, suggesting the presence of temporal markers. The study highlights the potential of machine learning models like OpenCLIP in dating images and emphasizes the importance of fine-tuning for accurate temporal analysis. Future research should explore the application of these findings to color photographs and diverse datasets

    I Bet You Are Wrong: Gambling Adversarial Networks for Structured Semantic Segmentation

    Full text link
    Adversarial training has been recently employed for realizing structured semantic segmentation, in which the aim is to preserve higher-level scene structural consistencies in dense predictions. However, as we show, value-based discrimination between the predictions from the segmentation network and ground-truth annotations can hinder the training process from learning to improve structural qualities as well as disabling the network from properly expressing uncertainties. In this paper, we rethink adversarial training for semantic segmentation and propose to formulate the fake/real discrimination framework with a correct/incorrect training objective. More specifically, we replace the discriminator with a "gambler" network that learns to spot and distribute its budget in areas where the predictions are clearly wrong, while the segmenter network tries to leave no clear clues for the gambler where to bet. Empirical evaluation on two road-scene semantic segmentation tasks shows that not only does the proposed method re-enable expressing uncertainties, it also improves pixel-wise and structure-based metrics.Comment: 13 pages, 8 figure
    corecore